4.7 Article

Pyrolysis and hydrolysis behaviors during steam pyrolysis of polyimide

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jaap.2016.04.011

关键词

Kapton; Pyrolysis; Hydrolysis; Thermogravimetric analysis; Kinetic analysis

资金

  1. Japan Society for the Promotion of Science [25241022, 15H06010]
  2. Grants-in-Aid for Scientific Research [15H06010] Funding Source: KAKEN

向作者/读者索取更多资源

Kapton film, which is a typical aromatic polyimide (PI) film, exhibits excellent thermal stability and flexibility. Therefore, it is used widely for flexible printed circuit boards in combination with other resins and metals. However, this makes it difficult to recycle it. In this work, we focused on the steam pyrolysis technique, which is a method of depolymerizing condensation polymers without solvents, catalysts, or high pressure, as a way of overcoming this issue. The steam pyrolysis of Kapton film was carried out using a thermogravimetric (TG) analyzer equipped with a steam generator. In addition, the TG results were evaluated further using model fitting techniques. It was found that steam enhanced the hydrolysis of the imide ring, which occurred on the surface of the PI film. The hydrolysis selectivity was as high as 89% at 528 degrees C. However, steam did not significantly enhance the Kapton decomposition rate, owing to rapid carbonization, which took place because of the simultaneous occurrence of pyrolysis. Thus, the obtained results implied that high-yield monomer recovery can be achieved by lowering the temperature to prevent pyrolysis and by improving the steam contact efficiency to enhance hydrolysis within the material. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据