4.7 Article

A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction

期刊

JOURNAL OF SOUND AND VIBRATION
卷 526, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2022.116803

关键词

Acoustic black holes; Metamaterials; Low frequency; Gaussian expansion; Component mode synthesis

资金

  1. National Natural Science Foundation of China [52171323]
  2. China Postdoctoral Science Foundation [2018M631194, 2020T130533]

向作者/读者索取更多资源

A new design of acoustic black hole (ABH) plate is proposed in this study, featuring attached resonators tuned to suppress the plate's first eigenmode and dampened to lower remaining low-order eigenfrequencies, providing broadband vibration reduction across the frequency range with the ABH effect.
Acoustic black hole (ABH) indentations on plates are very efficient to reduce high frequency vibrations. However, when the wavelength of the impinging bending waves on the ABH is larger than its diameter, waves cannot be trapped and dissipated within the ABH and that becomes ineffective. Therefore, it would be highly desirable to extend the performance of ABH plates to lower frequencies. In this work, a method is proposed to accomplish that goal. It is suggested to design a metamaterial in which a set of periodic local resonators are attached to an ABH plate. On the one hand, the resonators are tuned to have a bandgap at the plate first eigenmode so as to suppress it. On the other hand, the resonators are also damped which substantially lowers the peaks of the remaining low-order eigenfrequencies. In combination with the ABH effect, such design, hereafter termed the MMABH plate, provides broadband vibration reduction covering the whole frequency range. To characterize the MMABH, the Gaussian expansion method (GEM) for determining the vibrations of the ABH plate is integrated with a component mode synthesis (CMS) approach, which allows one to link the resonators to the plate. That method is validated against finite element simulations. The MMABH is designed so that its overall mass (ABH plate plus resonators) equals that of the uniform plate without ABH indentation, to offer a light-weight solution. Theoretical explanations of the functioning of the MMABH plate are provided based on the analysis of the ABH effect, the dispersion curves and bandgaps of infinite periodic plates with local resonators and finally, the merging of both topics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据