4.7 Article

Effective and robust rocking centrifugal pendulum vibration absorbers

期刊

JOURNAL OF SOUND AND VIBRATION
卷 527, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2022.116821

关键词

Centrifugal pendulum vibration absorber; Rocking absorbers; Nonlinear absorber design; Relative absorber rotation

资金

  1. National Science Foundation [CMMI-1100260]

向作者/读者索取更多资源

This work presents a design methodology for robust and effective centrifugal pendulum absorbers, which can translate the relative center of mass along a given path and rotate angular body. The method reduces rotor fluctuations and is suitable for aircraft and automotive drive systems. The application of nonlinear tautochronic design philosophy and nonlinear detuning enables the design of more effective and robust absorbers.
In this work, a design methodology for robust and effective centrifugal pendulum absorbers is presented with a relative center of mass translation along a given path and angular body rotation. This type of absorber is used in rotatory machines with rotor angle synchronous excitation, allowing for a reduction of angular rotor fluctuations over the entire speed range. The main areas of application are aircraft drives and automotive drive trains with internal combustion engines. Since the requirements placed on absorbers are increasingly demanding in terms of reducing their mass without sacrificing effectiveness, new design approaches must be pursued. The linear theory used in the past has been replaced by the nonlinear tautochronic design philosophy that provides an increased working range of the pendula. This approach has been extended in recent years with regard to nonlinear detuning in order to obtain effective and robust absorbers. It is known that, in addition to the translation of the pendula, the rotation of the pendulum bodies, contributes to absorber performance, and the nonlinear design tools are extended to this case. The proposed unified design approach allows one to apply existing tuning methodologies of centrifugal pendulum absorbers with their relative rotational movement, referred to as rockingabsorbers. Maintaining generality, the equations of motion are derived for a system with multiple absorbers and prepared for the application of simulations and continuation algorithms for parameter studies. Additionally, a state transformation is presented, which allows the application of perturbation methods and averaging under the assumption of small parameters. The increased effectiveness of these rocking absorber class when compared to non-rocking absorbers is quantified and demonstrated by numerical case studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据