4.3 Review

Data-driven fluid mechanics of wind farms: A review

期刊

出版社

AIP Publishing
DOI: 10.1063/5.0091980

关键词

-

资金

  1. Independent Research Fund Denmark (DFF) [0217-00038B]

向作者/读者索取更多资源

With the increasing number of wind farms, research in wind-farm flow modeling is shifting towards data-driven techniques. However, the complexity of fluid flows in real wind farms poses unique challenges for data-driven modeling, requiring models to be interpretable and have some degree of generalizability.
With the growing number of wind farms over the last few decades and the availability of large datasets, research in wind-farm flow modeling-one of the key components in optimizing the design and operation of wind farms-is shifting toward data-driven techniques. However, given that most current data-driven algorithms have been developed for canonical problems, the enormous complexity of fluid flows in real wind farms poses unique challenges for data-driven flow modeling. These include the high-dimensional multiscale nature of turbulence at high Reynolds numbers, geophysical and atmospheric effects, wake-flow development, and incorporating wind-turbine characteristics and wind-farm layouts, among others. In addition, data-driven wind-farm flow models should ideally be interpretable and have some degree of generalizability. The former is important to avoid a lack of trust in the models with end-users, while the most popular strategy for the latter is to incorporate known physics into the models. This article reviews a collection of recent studies on wind-farm flow modeling, covering both purely data-driven and physics-guided approaches. We provide a thorough analysis of their modeling approach, objective, and methodology and specifically focus on the data utilized in the reviewed works.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据