4.5 Article

Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species

期刊

JOURNAL OF ALZHEIMERS DISEASE
卷 54, 期 3, 页码 971-982

出版社

IOS PRESS
DOI: 10.3233/JAD-160427

关键词

Alzheimer's disease; copper-binding protein; hydrogen peroxide; membrane chemistry; neurodegeneration; protein aggregation

资金

  1. Magnus Bergvall foundation
  2. Swedish Research Council
  3. Brain Foundation

向作者/读者索取更多资源

Aggregation of the amyloid-beta (A beta) peptide into insoluble plaques is a major factor in Alzheimer's disease (AD) pathology. Another major factor in AD is arguably metal ions, as metal dyshomeostasis is observed in AD patients, metal ions modulate A beta aggregation, and AD plaques contain numerous metals including redox-active Cu and Fe ions. In vivo, A beta is found in various cellular locations including membranes. So far, Cu(II)/A beta interactions and ROS generation have not been investigated in a membrane environment. Here, we study Cu(II) and Zn(II) interactions with A beta bound to SDS micelles or to engineered aggregation-inhibiting molecules (the cyclic peptide CP-2 and the Z(A beta 3)(12-58) Y18L Affibody molecule). In all studied systems the A beta N-terminal segment was found to be unbound, unstructured, and free to bind metal ions. In SDS micelles, A beta was found to bind Cu(II) and Zn(II) with the same ligands and the same K-D as in aqueous solution. ROS was generated in all Cu(II)/A beta complexes. These results indicate that binding of A beta to membranes, drugs, and other entities that do not interact with the A beta N-terminal part, appears not to compromise the N-terminal segment's ability to bind metal ions, nor impede the capacity of N-terminally bound Cu(II) to generate ROS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据