4.6 Article

Three-fold way of entanglement dynamics in monitored quantum circuits

出版社

IOP Publishing Ltd
DOI: 10.1088/1751-8121/ac71e8

关键词

entanglement; random matrix theory; phase transitions; quantum circuits

资金

  1. EPSRC [EP/T518037/1]

向作者/读者索取更多资源

This study investigates the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles. By contrasting different ensembles, the study reveals the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles (circular unitary, orthogonal, and symplectic ensembles; CUE, COE and CSE). We utilise the established model of a one-dimensional circuit evolving under alternating local random unitary gates and projective measurements performed with tunable rate, which for gates drawn from the CUE is known to display a transition from extensive to intensive entanglement scaling as the measurement rate is increased. By contrasting this case to the COE and CSE, we obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements. For this, we combine exact analytical random-matrix results for the entanglement generated by the individual gates in the different ensembles, and numerical results for the complete quantum circuit. These considerations include an efficient rephrasing of the statistical entangling power in terms of a characteristic entanglement matrix capturing the essence of Cartan's KAK decomposition, and a general result for the eigenvalue statistics of antisymmetric matrices associated with the CSE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据