4.6 Article

Strain-Enhanced Formation of Delocalized Exciton States in Phthalocyanine Crystalline Thin Films

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 126, 期 20, 页码 8889-8896

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c01382

关键词

-

资金

  1. National Science Foundation [DMR-1056589, DMR-1919610, DMR-0821268, DMR-1828371]
  2. University of Vermont Sustainable Campus Fund

向作者/读者索取更多资源

This research investigates the potential of strain engineering in promoting the formation of delocalized excitonic states in organic semiconductors. The results demonstrate that tensile strain leads to the formation of delocalized excitons, accompanied by enhanced photoluminescence intensity and red shift in peak wavelength. These findings offer promising prospects for achieving delocalization at room temperature through strain engineering.
The formation of delocalized excitonic states in organic semiconductors is highly desirable because it leads to efficient energy transport in devices. We investigate the potential of uniaxial strain as a tuning dial for delocalized excitons (i.e., exciton-polarons) in crystalline thin films of soluble octabutoxy phthalocyanine. Absorption and photoluminescence spectra confirm the formation of delocalized excitonic states in the presence of tensile strain, accompanied by a red shift of low-frequency vibration modes (<100 cm(-1)) in Raman spectroscopy, which are likely responsible for the delocalized exciton formation. Remarkably, an 80% enhancement in photoluminescence intensity and a 30 nm red shift in peak wavelength are observed for a tensile strain of 4.9%, which is equivalent to a temperature reduction approximately by 100 K below room temperature. These results show promise that strain engineering can efficiently modify the exciton-phonon coupling in octabutoxy phthalocyanine crystalline thin films toward enabling delocalization at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据