4.6 Article

RP-HPLC separation of interconvertible rotamers of a 5-tetrahydroisoquinolin-6-yl-pyridin-3-yl acetic acid derivative and confirmation by VT NMR and DFT study

出版社

ELSEVIER
DOI: 10.1016/j.jpba.2022.114675

关键词

Interconvertible rotamers; RP-HPLC; Achiral; DFT; VT-NMR

向作者/读者索取更多资源

Due to drug resistance and tolerability, it is important to discover new compounds for HIV treatment. In this study, an intermediate compound SCMTDDA was synthesized and a simple and efficient HPLC method was developed to separate its interconvertible rotamers. The separation was further validated using NMR and DFT calculations.
Due to emergence of drug resistance and drug tolerability, there is urgent need for discovery of new chemical entity for the treatment of HIV infection. As a part of in-house small molecule drug discovery program for HIV infection, sodium-2-(tert-butoxy)- 2-(5-(2-(2-chloro-6-methylbenzyl)- 1,2,3,4-tetrahydroisoquinolin-6-yl)- 4(4,4-dimethylpiperidin-1-yl)- 2,6-dimethylpyridin-3-yl) acetate (SCMTDDA) was prepared as an intermediate for the synthesis of an API, designed as a HIV-1 integrase inhibitor. Initially, the final compound was isolated as a mixture of rotamers. In the current study, we have developed a simple and efficient achiral, reversed phase (RP) HPLC method to separate the interconvertible rotamers of SCMTDDA. The effect of several parameters, including stationary phase, buffer, modifiers and column temperature, were optimized for the chromatographic separation and it was observed that best separation was achieved on a SunFire C18 column using TFA/acetonitrile (ACN) methanol (MeOH) (1:1 v/v) as the mobile phase at 10 0C. The chromatographic observations were complemented with variable-temperature NMR and energy barrier calculations using density functional theory (DFT).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据