4.7 Review

Investigation of doping effect on electrical leakage behavior of BiFeO3 ceramics

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 689, 期 -, 页码 475-480

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2016.07.270

关键词

BiFeO3; Multiferroics; Leakage current

资金

  1. National Natural Science Foundation of China [11174021]
  2. Beijing Natural Science Foundation [2122007]

向作者/读者索取更多资源

Bi(0.9)A(0.1)FeO(3) (A = Ca, Sr and Ba) ceramics are synthesized by using the conventional solid state reaction method. X-ray diffraction analysis shows that all the ceramics have a hexagonal distorted perovskite structure with the space group R3c. It is found that A-site substitution with the smallest ionic radius ions Ca2+ among (Ca2+, Sr(2+)and Ba2+) effectively suppressed the leakage current. The oxygen vacancies increase with the increase of the doping ionic radius of the divalent cations (Ca2+, Sr2+ and Ba2+) in Bi(0.9)A(0.1)FeO(3) ceramics. The dependence of the electric field on the leakage current is systematically illustrated by using two bulk-limited conduction mechanisms (space-charge-limited conduction and Poole-Frenkel emission) and other two interface-limited conduction mechanisms (Schottky emission and Fowler-Nordheim tunneling). The dependence of temperature on electrical conductivity and the XPS measurements illustrate that the Fe2+ transport behavior could be mainly responsible for the electrical leakage behavior of BAFO (A = Ca, Sr and Ba) ceramics. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据