4.6 Article

Bio-engineered hexagon-shaped Co3O4 nanoplates on deoxyribonucleic acid (DNA) scaffold: An efficient electrode material for an asymmetric supercapacitor and electrocatalysis application

期刊

JOURNAL OF MOLECULAR STRUCTURE
卷 1256, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molstruc.2022.132499

关键词

DNA scaffold; Co3O4 nanoplates; Hexagon shape; Supercapacitor; Energy storage

资金

  1. National Research Foundation of Korea (NRF) [2019R1D1A3A03103616]
  2. Chungbuk National University BK (Brain Korea) 21 FOUR (2021) program
  3. National Research Foundation of Korea [2019R1D1A3A03103616] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study demonstrates the preparation of hexagon-shaped spinel Co3O4 nanoplates using a DNA template and explores their applications in energy storage and electrocatalysis.
Using biological scaffolds to template inorganic materials provides a method for creating accurate composite nanostructures of various dimensions. Herein, we demonstrate the preparation of hexagon-shaped spinel structured Co3O4 nanoplates using a deoxyribonucleic acid (DNA) mediated co-precipitation method. The DNA template effectively tuned the morphological properties of the Co3O4 materials and provided the hexagonal shaped nanostructures. The Co3O4 hexagons show a battery-type energy storage mechanism and provide 739 C g(-1) of specific capacity at 1 A g(-1) in 6 M KOH electrolyte. The asymmetric supercapacitor device such as Co3O4//activated carbon (AC) delivered 186 degrees C g(-1) of specific capacity at 1 A g(-1) and exhibited the energy and power densities of 66.1 Wh kg(-1) and 1652 W kg(-1), respectively. In studies of the oxygen evolution reaction with a three-electrode cell in 0.1 M H2SO4, the Co3O4 electrocatalyst showed a small overpotential of 460 mV at 0.5 mA cm(-2) and Tafel slope of 58.93 mV/dec with excellent stability at room temperature. This study provides a route for preparing other metal oxide nanostructures by utilizing a bio-template in a short time scale with high yields at room temperature. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据