4.7 Article

Construction of single-atom Ag embedded O, K co-doped g-C3N4 with enhanced photocatalytic efficiency for tetracycline degradation and Escherichia coli disinfection under visible light

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 352, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2022.118655

关键词

g-C3N4; O; K co-doped; Single-atom Ag; Photocatalysis; Degradation; Disinfection

资金

  1. Agricultural Science and Technology Innovation Foundation of Jiangsu Province [CX- (2019) -2042]
  2. Talent Foundation of Jiangsu University [JDFYRC2017002]
  3. Key Research and Invention Program of Zhen-jiang [SH2019063]
  4. Undergraduate Innovation Program of Jiangsu University [202010299592X]

向作者/读者索取更多资源

Photocatalytic technique using O, K co-doped g-C3N4 photocatalyst embedded with single-atom Ag has shown enhanced degradation and disinfection efficiency in aquatic environment. The optimal Ag/OKCN-6 could eliminate 80.4% of tetracycline within 60 minutes and completely inactivate Escherichia coli by efficient disruption of cell membranes. The synergistic effect of O, K co-doping and single-atom Ag embedding contributed to extended light response, improved charge separation and transfer, prolonged carrier lifetime, and enhanced hydrophilicity, resulting in excellent photocatalytic performance.
Photocatalytic technique has been widely accepted as a promising and effective candidate for eliminating antibiotic and pathogen pollutants in aquatic environment. Herein, a novel O, K co-doped g-C3N4 photocatalyst embedded with single-atom Ag (denoted as Ag/OKCN) was successfully constructed to achieve the enhanced photocatalytic degradation and disinfection efficiency under visible light irradiation. The optimal Ag/OKCN-6 could eliminate 80.4 % of tetracycline (TC) within 60 min with a rate constant of 0.0259 min(-1), which was 4.98 times of pristine g-C3N4. Meanwhile, Ag/OKCN-6 could also completely inactivate > 7-log CFU center dot mL(-1) of Escherichia coli (E. coli) by efficient disruption of cell membranes. The synergistic effect of O, K co-doping and single-atom Ag embedding contributed to an extended light response, preeminent separation and transfer of photoexcited charges, prolonged carrier lifetime as well as ameliorative hydrophilicity, which was conducive to the excellent photocatalytic performance. Radical trapping and electron spin resonance (ESR) experiments validated that superoxide radicals (O-center dot(2)) were crucially responsible for the superior photocatalytic activity. This work provides a facile route to construct multi-strategy modified g-C3N4-related photocatalysts for efficiently eliminating aquatic environmental pollutants. (c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据