4.7 Article

Intermolecular interactions in an equimolar methanol-water mixture: Neutron scattering, DFT, NBO, AIM, and MD investigations

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 349, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2021.118131

关键词

Neutron scattering; H-bond; DFT calculation; NBO; AIM; MD simulations

向作者/读者索取更多资源

A detailed analysis of the equimolar methanol-water (MeW) liquid structure at 298 K and atmospheric pressure was performed using neutron scattering, Density Functional Theory (DFT) calculation, and Molecular Dynamics (MD) simulations. The results showed the formation of water-methanol H-bonded clusters in the MeW mixture, leading to a decrease in the self-diffusion coefficients of the monomers.
A detailed analysis of equimolar methanol-water (MeW) liquid structure at 298 K and atmospheric pressure is performed using neutron scattering, Density Functional Theory (DFT) calculation and Molecular Dynamics (MD) simulations. New neutron scattering data at large scattering wave vectors were explored to determine the structure factor S-M(q), the molecular form factor F-1(q) and the intermolecular pair correlation function g(L)(r). To describe the local order of the mixture, a large variety of H-bonded clusters has been optimized using DFT calculation with the 6-311++ G(d, p) basis. Experimental data were interpreted in terms of two cyclic trimers involving respectively 2Me-1W and 2W-1Me molecules. A detailed study of the H-bond interactions in the most probable clusters in the mixture was performed using Natural Bond orbital (NBO) and Atomsin Molecules (AIM) analyses. To have more structural information about the mixture at medium and large distances as well as the dynamic of molecules in solution, MD simulations were performed using three force fields. Our results show that several H-bonds between water molecules and between methanol ones are broken in favor of the formation of water-methanol H-bonded clusters. The self-diffusion coefficients of monomers decrease when going from the pure to the mixed states. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据