4.7 Article

Raman spectroscopy coupled to computational approaches towards understanding self-assembly in thermoreversible poloxamer gels

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 351, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2022.118660

关键词

Poloxamers; Pluronics; Kolliphors; Raman spectroscopy; Chemometrics; Quantum mechanics

资金

  1. EPSRC [EP/T00813X/1]
  2. University of Hertfordshire

向作者/读者索取更多资源

The exploitation of vibrational spectroscopy is important for understanding molecular-level events in polymers and allows real-time monitoring of processes and the realization of superior structures. A study on poloxamer-based systems reveals that temperature-controlled events involve not only C-H stretching motions but also other vibrational regions, and optimal formulation results can be obtained through vibrational analysis at different temperatures.
The exploitation of vibrational spectroscopy towards the understanding of molecular-level events in polymers, such as poloxamers, is highly warranted. This would facilitate the development of real-time approaches to monitor processes as well as the rational realisation of superior architectures. To date, studies on poloxamer based systems are restricted to low concentration materials and the evaluation of vibrational frequencies involving C-H stretching motions. We carry out an in-depth analysis of thermally-induced micellization processes employing technologically relevant 20% w/w P407 aqueous formulations. Our results, coupling Raman spectroscopy to computational approaches, are unequivocally consistent with such temperature-controlled events not being restricted to molecular re-arrangements involving C-H stretching motions. In fact, the synergistic approach of all key spectral regions was observed to yield optimum delineation of formulations at different temperatures. Vibrational envelopes were deconvoluted and it was observed that vibrational analysis of convoluted spectra can often be misleading. Individual contributions were assigned to either PEO or PPO building blocks by means of quantum-mechanical calculations. Temperature-induced changes to both intensity and vibrational frequencies were statistically evaluated and identified variations rationalised based on intermolecular interactions and structural order/disorder of the polymer units. Such observations were identified to be critically different depending on the nature of the vibrations. (C) 2022 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据