4.7 Article

Study on the structural properties of refining slags by molecular dynamics with deep learning potential

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 353, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2022.118787

关键词

Refining slag; Microstructure; Deep learning; Ab-Initio molecular dynamics

资金

  1. National Natural Science Foundation of China [51874061]
  2. Natural Science Foundation of Hebei Province, China [E2020209195]

向作者/读者索取更多资源

This study investigated the microstructure of CaO-Al2O3 systems and the impact of different compositions on the structure of molten slags. The results demonstrate that an increase in the molar fraction of CaO from 0.5 to 0.7 results in deteriorated fluidity of the slag.
The CaO-Al2O3 is the most important basis of the multicomponent slag in the steel making industry. The microstructure of molten CaO-Al2O3 systems affects the physical, chemical, and metallurgic properties of refining slags. It is significant to establish a computational method to accurately describe the microstructure of the slag at the atomic level and speculate the properties of large slag models. In this paper, the effect of compositions on the structure of molten CaO-Al2O3 systems was studied by ab initio molecular dynamics, deep learning theory, and deep potential molecular dynamics. The structures of various molten slags were simulated by ab initio molecular dynamics, which accurately describes the interactions between atoms. The potential functions were obtained by deep learning theory. The properties of the large slag models were simulated by molecular dynamics with deep learning potential. As the molar fraction of CaO increases from 0.5 to 0.7, the combination of O and Al mainly forms [AlO4](-5), [AlO3](-3), and [AlO5](-7). Ca presents mainly as free cations in the molten CaO-Al2O3 system. In addition, the diffusion coefficient of Ca decreases from 9.0 x 10(-10) m(2)/s to 5.4 x 10(-10) m(2)/s. The diffusion coefficients of Al and O slightly decrease and are close to 1.1 x 10(-10) m(2)/s and 3.0 x 10(-10) m(2)/s, respectively. It is deduced that the dissolution of CaO provides free O-2(-) and promotes the formation of [AlOn]-b and increases the polymerization degree, which causes deterioration of the fluidity of molten CaO-Al2O3 slags as XCaO increases from 0.5 to 0.7. (c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据