4.7 Article

Deep desulfurization of model fuels by metal-free activated carbons: The impact of surface oxidation and antagonistic effects by mono- and polyaromatics

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 351, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2022.118661

关键词

dibenzothiophene (DBT); 4,6-dimethyldibenzothiophene (4,6-DMDBT); Desulfurization of fuels; Adsorption mechanisms; Chemical treated (oxidized) porous carbon

资金

  1. European Regional Development Fund of the European Union
  2. Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (EPAnEK 2014-2020), under the Action ``RESEARCH-CREATE-INNOVATE.' CALL [2.D.-01976]

向作者/读者索取更多资源

The main objective of this work is to evaluate the efficiency of adsorptive deep desulfurization under ambient conditions and study the effects of competitors in real fuels. By examining various activated carbons and model fuels, the study found that oxidation treatment enhances the adsorption capacity of carbons and can effectively remove sulfur compounds from the model fuel.
The main novel objective of this work is the evaluation of the adsorptive deep desulfurization efficiency under ambient conditions and studying in detail the effects arisen from the presence of competitors as in real fuels. Towards this direction, several activated carbons (commercially available and chemically modified/oxidized counterparts) were examined using a (diesel) model fuel containing initially 20 ppmwS of 4,6-dimethyldibenzothiophene (4,6-DMDBT) and 20 ppmwS of dibenzothiophene (DBT), as well as mono- and di-aromatic competitors, namely benzene and naphthalene, in hexadecane. To gain better insights regarding the adsorption sites, the involved mechanisms, and the impact/antagonistic effect arisen by the presence of the aromatics in high concentration, simpler model fuels were also utilized while emphasis was also given on exploring which physicochemical features, textural (N-2 adsorption) or surface chemistry (Boehm titration and surface pH measurements), play a key role. In all cases, the oxidation treatment enhanced the adsorption capacity of the carbons, despite a decrease on the porosity, by introducing additional surface functional groups, indicating that surface chemistry plays a vital role in adsorptive desulfurization and that difference in chemical nature adsorption sites exists. The best performing oxidized carbon (SX PLUS-ox) presented a 92.1% (5.2 mgS/g capacity) removal of DBT in hexane and a 67.7% 4,6-DMDBT removal (4.0 mgS/g) in pure hexadecane. In the case of 4,6-DMDBT in hexadecane, the addition/co-presence of the aromatics in low concentration led to slightly lower desulfurization of 57.8% (3.6 mgS/g), revealing the limited antagonistic effect due to the aromatics. When DBT was also present, the 4,6-DMDBT removal was 51.2% (3.5 mgS/g) while the DBT removal 50.9 % (3.6 mgS/g), leading to a high total thiophenic adsorption capacity of 7.1 mgS/g. Even with the addition of the mono- and di-aromatics with concentrations as in real diesel fuel, the best performing carbons after oxidation demonstrated a superior desulfurization performance, since >10 ppmwS can still be removed from the model fuel. The results designate that the oxidation of porous activated carbon can be considered as an effective materials design strategy in adsorptive deep desulfurization, since different oxygen containing surface functional groups that can act as adsorption sites are created and have a crucial selectivity towards thiophenes compared to the aromatics. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据