4.4 Article

Discordance between Immunohistochemistry and Erb-B2 Receptor Tyrosine Kinase 2 mRNA to Determine Human Epidermal Growth Factor Receptor 2 Low Status for Breast Cancer

期刊

JOURNAL OF MOLECULAR DIAGNOSTICS
卷 24, 期 7, 页码 775-783

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmoldx.2022.04.002

关键词

-

向作者/读者索取更多资源

Based on quantitative molecular analysis of breast cancers using RNA expression, this study found that the dynamic range of HER2 expression in HER2-low expressing breast cancers exceeds the detection range of current immunohistochemistry methods. It suggests that defining HER2-low cancers based on RNA abundance may better serve treatment decision needs. However, further evaluation through prospective clinical trials is needed to validate the efficacy of RNA abundance in identifying HER2-low cancers and predicting treatment response.
Novel human epidermal growth factor receptor 2 (HER2)-directed antibody-drug conjugates have demonstrated efficacy in HER2-low expressing breast cancers, which are currently defined as those with immunohistochemistry (IHC) scores of 1+ or 2+ with a negative in situ hybridization assay. However, current HER2 testing methods are designed to identify HER2-amplified tumors with high expression levels. The true definition of HER2-low expressing breast cancers remains controversial. Using quantitative molecular analysis of breast cancers based on RNA expression, the dynamic range of HER2 expression exceeds that detected by in situ IHC approaches. Erb-B2 receptor tyrosine kinase 2 (ERBB2) mRNA expression levels across IHC groups using patient samples derived from the Tamoxifen Exemestane Adjuvant Multicenter Trial were investigated. The standardized mean differences in ERBB2 mRNA scores in log base 2 are 0.47 (95% CI, 0.36-0.57), 0.58 (95% CI, 0.26-0.70), and 0.32 (95% CI, -0.12 to 0.75) when comparing IHC 0+ without staining versus IHC 0+ with some staining, IHC 0+ with some staining versus IHC 1+, and IHC 1+ versus IHC 2+/fluorescence in situ hybridization -negative, respectively. The results showed immunohistochemical methods have a comparatively limited dynamic range for measuring HER2 protein expression. The range of expression based on RNA abundance suggests a molecular method defining HER2-low cancers may better serve the treatment decision needs of this group. Indeed, the validity of RNA abundance to identify HER2-low cancers and predict treatment response needs to be further evaluated by prospective clinical trials. (J Mol Diagn 2022, 24: 775-783; https://doi.org/10.1016/j.jmoldx.2022.04.002)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据