4.7 Article

RBPBind: Quantitative Prediction of Protein-RNA Interactions

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 434, 期 11, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2022.167515

关键词

protein-RNA interactions; RNA secondary structure; binding affinity; web server

资金

  1. National Science Foundation [DMS-0931642, DMR-1410172, DMR-1719316]

向作者/读者索取更多资源

The study focuses on the interactions of hundreds of RNA binding proteins in the human genome with RNA in cells, introducing RBPBind as a web-based tool for quantitatively predicting the interaction by considering the effect of RNA secondary structure on binding affinity. The tool provides a quick and easy way to obtain reliable predicted binding affinities and locations for single-stranded RNA binding proteins based solely on RNA sequence.
There are hundreds of RNA binding proteins in the human genome alone and their interactions with messenger and other RNAs in a cell regulate every step in an RNA's life cycle. To understand this interplay of proteins and RNA it is important to be able to know which protein binds which RNA how strongly and where. Here, we introduce RBPBind, a web-based tool for the quantitative prediction of the interaction of single-stranded RNA binding proteins with target RNAs that fully takes into account the effect of RNA secondary structure on binding affinity. Given a user-specified RNA and a protein selected from a set of several RNA-binding proteins, RBPBind computes their binding curve and effective binding constant. The server also computes the probability that, at a given protein concentration, a protein molecule will bind to any particular nucleotide along the RNA. The sequence specificity of the protein-RNA interaction is parameterized from public RNAcompete experiments and integrated into the recursions of the Vienna RNA package to simultaneously take into account protein binding and RNA secondary structure. We validate our approach by comparison to experimentally determined binding affinities of the HuR protein for several RNAs of different sequence contexts from the literature, showing that integration of raw sequence affinities into RNA secondary structure prediction significantly improves the agreement between computationally predicted and experimentally measured binding affinities. Our resource thus provides a quick and easy way to obtain reliable predicted binding affinities and locations for single-stranded RNA binding proteins based on RNA sequence alone.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据