4.7 Article

Solvent recovery from photolithography wastes using cellulose ultrafiltration membranes

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 647, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2022.120261

关键词

Cellulose membrane; Alkaline hydrolysis; Organic solvent ultrafiltration; Photolithography; PGMEA

资金

  1. TUBITAK [MAG218M509]

向作者/读者索取更多资源

Solvent recycling and reuse are crucial for the sustainability of the chemical industry and circular economy. This study focuses on the fabrication of cellulose ultrafiltration membranes and their application in recovering propylene glycol methyl ether acetate (PGMEA) from SU-8 photolithography. The cellulose membranes were able to reject SU-8 with high efficiency at 80% permeate recovery.
Solvent recycling and reuse are indispensable for ensuring a sustainable chemical industry and circular economy. In this study we report the fabrication of cellulose ultrafiltration membranes and their application in recovery of propylene glycol methyl ether acetate (PGMEA) used as developer solvent in SU-8 photolithog-raphy. Cellulose membranes were fabricated via alkaline hydrolysis of cellulose acetate membranes in aqueous NaOH. Membrane permeance and molecular weight cut-off (MWCO) were tuned via changing cellulose acetate concentration in precursor solution and evaporation of volatile co-solvent, acetone. MWCO of the membranes was found to be smallest in DMSO, followed by water and largest in methanol. The difference was attributed to the different hydrodynamic diameters of the probe molecules in these solvents. SU-8 rejection from its representative developer solutions in PGMEA was assessed in dead-end filtration at up to 80% permeate recovery. After the first filtration, the collected permeate was fed to the same membrane to simulate a two-stage filtration scenario. Rejection was in the range of 87%-89% in a first stage filtration and 79%-80% in a second stage, both operated at 80% permeate recovery. Recycled solvent could be used in photolithography although with some loss of pattern fidelity, possibly owing to remaining SU-8 and photoacid generator in PGMEA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据