4.7 Article

Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 108, 期 -, 页码 64-72

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2021.08.049

关键词

NiFe2O4/PPy composites; Negative permittivity; EMW absorption

资金

  1. Research Starting Foundation of Shaanxi University of Science and Technology [2019QNBJ-01]
  2. Research Foundation for Thousand Young Talent Plan of Shaanxi province of China

向作者/读者索取更多资源

NiFe2O4/polypyrrole nanocomposites demonstrate negative permittivity in the low frequency regions and significantly enhanced electromagnetic wave absorption property in the high frequency regions. The enhanced negative permittivity is observed in the nanocomposites with different NiFe2O4 loadings, indicating the formation of a metal-like electrical conducting network. The minimum reflection loss of -40.8 dB is achieved in the 40.0 wt% NiFe2O4/PPy composites with a thickness of 1.9 mm. The research work provides guidance for the fabrication of nanocomposites with excellent electromagnetic wave absorption.
NiFe2O4/polypyrrole (NiFe2O4/PPy) nanocomposites are prepared by a simple surface-initiated polymerization method and demonstrate negative permittivity in the low frequency regions. These nanocomposites also exhibit significantly enhanced electromagnetic wave (EMW) absorption property in the high frequency regions. Compared with pure PPy, the enhanced negative permittivity is observed in the NiFe2O4/PPy nanocomposites with a NiFe2O4 loading of 5.0, 10.0, 20.0 and 40.0 wt%, indicating the formation of metal-like electrical conducting network in NiFe2O4/PPy nanocomposites. Moreover, the negative permittivity could be tuned by changing the NiFe2O4 loading. The minimum reflection loss (RL) of -40.8 dB is observed in the 40.0 wt% NiFe2O4/PPy composites with a thickness of only 1.9 mm. The effective absorption bandwidth below -10.0 and -20.0 dB reaches 6.08 and 2.08 GHz, respectively. The enhanced EMW absorption performance benefits from the improved independence matching, EMW attenuation capacity, and synergistic effects of conduction loss, dielectric loss (interfacial and dipole polarizations) and magnetic loss (exchange and natural resonances). This research work provides a guidance for the fabrication of nanocomposites with an excellent EMW absorption. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据