4.7 Article

Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 102, 期 -, 页码 36-45

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2021.04.037

关键词

Bulk-metallic glass; Plasma-assisted hydrogenation; Nanoindentation; Internal flow unit; Serrations; Nano-scale creep

资金

  1. National Natural Sci-ence Foundation of China [51401129]
  2. Natural Science Foundation of Liaoning Province [2019-ZD-0216, 20180510056]
  3. Foundation of Liaoning Province Education Administration [LQGD2019001]
  4. National Science Foundation [DMR-1611180, 1809640]
  5. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Ma-terials Sciences and Engineering Division [DE-AC02-05-CH11231]

向作者/读者索取更多资源

This study manipulated internal flow units in bulk-metallic glasses through plasma-assisted hydrogenation to improve plasticity and induce structural relaxation.
This work intends to manipulate the internal flow units in Zr55Cu30Ni5Al10 bulk-metallic glasses (BMGs) through plasma-assisted hydrogenation to generate a positive microalloying effect on plasticity. Based on the cooperative shear model theory, serration-flow statistics during nanoindentation loading and creep tests during the holding stage were used to analyze the influence of hydrogen on the behavior of flow units in BMGs. Experimental observations showed that the hydrogen in the Zr55Cu30Ni5Al10 BMGs caused mechanical softening, plasticity improvement, and structural relaxation. Analysis also showed that the average volume, size, and activation energy of internal flow units in the BMGs all increased as a result of the increase in the hydrogen content. The hydrogenation in the BMGs was found to lead to a proliferation of shear bands, which promoted plasticity. The aggregation of these internal flow units reduced the stress required for plastic deformation through shear bands, ultimately causing softening and structural relaxation. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据