4.5 Article

FKN/CX3CR1 axis facilitates migraine-Like behaviour by activating thalamic-cortical network microglia in status epilepticus model rats

期刊

JOURNAL OF HEADACHE AND PAIN
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s10194-022-01416-w

关键词

Migraine; Epilepsy; Microglia; FKN; CX3CR1; BDNF

资金

  1. National Natural Science Foundation of China [81971055, 82101292, 81471133]

向作者/读者索取更多资源

This study explores the characteristics and mechanism of microglial activation after seizures and their effect on migraine. The results indicate that epilepsy facilitates migraine through FKN/CX3CR1 axis-mediated microglial activation in the cortex/thalamus/sp5c, accompanied by BDNF release. Blocking the FKN/CX3CR1 axis and microglial activation are potential therapeutic strategies for preventing and treating migraine in patients with epilepsy.
Background The incidence of migraines is higher among individuals with epilepsy than in healthy individuals, and these two diseases are thought to shared pathophysiological mechanisms. Excitation/inhibition imbalance plays an essential role in the comorbidity of epilepsy and migraine. Microglial activation is crucial for abnormal neuronal signal transmission. However, it remains unclear whether and how microglia are activated and their role in comorbidities after being activated. This study aimed to explore the characteristics and mechanism of microglial activation after seizures and their effect on migraine. Methods Model rats of status epilepticus (SE) induced by intraperitoneal injection of lithium chloride (LiCl)-pilocarpine and migraine induced by repeated dural injections of inflammatory soup (IS) were generated, and molecular and histopathologic evidence of the microglial activation targets of fractalkine (FKN) signalling were examined. HT22-BV2 transwell coculture assays were used to explore the interaction between neurons and microglia. LPS (a microglial agonist) and FKN stimulation of BV2 microglial cells were used to evaluate changes in BDNF levels after microglial activation. Results Microglia were specifically hyperplastic and activated in the temporal lobe cortex, thalamus, and spinal trigeminal nucleus caudalis (sp5c), accompanied by the upregulation of FKN and CX3CR1 four days after seizures. Moreover, SE-induced increases in nociceptive behaviour and FKN/CX3CR1 axis expression in migraine model rats. AZD8797 (a CX3CR1 inhibitor) prevented the worsening of hyperalgesia and microglial activation in migraine model rats after seizures, while FKN infusion in migraine model rats exacerbated hyperalgesia and microglial activation associated with BDNF-Trkb signalling. Furthermore, in neuron-microglia cocultures, microglial activation and FKN/CX3CR1/BDNF/iba1 expression were increased compared with those in microglial cultures alone. Activating microglia with LPS and FKN increased BDNF synthesis in BV2 microglia. Conclusions Our results indicated that epilepsy facilitated migraine through FKN/CX3CR1 axis-mediated microglial activation in the cortex/thalamus/sp5c, which was accompanied by BDNF release. Blocking the FKN/CX3CR1 axis and microglial activation are potential therapeutic strategies for preventing and treating migraine in patients with epilepsy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据