4.5 Article

Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine

期刊

JOURNAL OF HEADACHE AND PAIN
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s10194-022-01414-y

关键词

Microstate; Resting-state; Migraine; MwoA; EEG

资金

  1. National Natural Science Foundation of China [81671077, 81600952, 81771180, 81771200, 81901134, 81901145]
  2. Beijing Natural Science Foundation Essential Research Project [Z170002]

向作者/读者索取更多资源

This study examined EEG microstates in migraine patients and found that microstate classes B and D had higher time coverage and occurrence in migraine patients compared to healthy controls, while microstate class C exhibited lower time coverage and occurrence. The duration of microstate class C was negatively correlated with headache-related disability in migraine patients. Microstate syntax analysis also revealed significant differences in transition probabilities between the two groups.
Background Resting-state EEG microstates are thought to reflect brief activations of several interacting components of resting-state brain networks. Surprisingly, we still know little about the role of these microstates in migraine. In the present study, we attempted to address this issue by examining EEG microstates in patients with migraine without aura (MwoA) during the interictal period and comparing them with those of a group of healthy controls (HC). Methods Resting-state EEG was recorded in 61 MwoA patients (50 females) and 66 HC (50 females). Microstate parameters were compared between the two groups. We computed four widely identified canonical microstate classes A-D. Results Microstate classes B and D displayed higher time coverage and occurrence in the MwoA patient group than in the HC group, while microstate class C exhibited significantly lower time coverage and occurrence in the MwoA patient group. Meanwhile, the mean duration of microstate class C was significantly shorter in the MwoA patient group than in the HC group. Moreover, among the MwoA patient group, the duration of microstate class C correlated negatively with clinical measures of headache-related disability as assessed by the six-item Headache Impact Test (HIT-6). Finally, microstate syntax analysis showed significant differences in transition probabilities between the two groups, primarily involving microstate classes B, C, and D. Conclusions By exploring EEG microstate characteristics at baseline we were able to explore the neurobiological mechanisms underlying altered cortical excitability and aberrant sensory, affective, and cognitive processing, thus deepening our understanding of migraine pathophysiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据