4.7 Article

Synergistic effects on d-band center via coordination sites of M-N3P1 (M = Co and Ni) in dual single atoms that enhances photocatalytic dechlorination from tetrachlorobispheonl A

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 430, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.128419

关键词

d-band center; N,P-coordination; Bimetal single atoms; Photocatalytic activity

资金

  1. National Natural Science Foundation of China [51878169, 52100076]

向作者/读者索取更多资源

A PH3-assisted annealing strategy was designed to synthesize atomically dispersed TM-SAs (CCoNiP), which showed increased catalytic activity and effective degradation of TCBPA under visible light irradiation.
Transition metal single atoms (TM-SAs) coordinated with highly electronegative N atoms often suffer from low activity and poor stability, which limiting their application in catalysis. To solve it, a PH3-assisted annealing strategy is designed to synthesize atomically dispersed TM-SAs (CCoNiP), which is stemmed from a pyrolysis approach of pre-designed CoNi layered double hydroxide (LHD) as a soft-template, and further coordinated with P atoms for adjusting the coordination environment. Characterization results show that the atomically dispersed Co and Ni atoms anchor on the carbon nitride substrate with Co/Ni-N3P1 coordination sites. Combined with density functional theory calculations, it is confirmed that multiple coordination sites of Co/Ni-N and Co/Ni-P can modulate d-band center position which increases the catalytic activity of TM-SAs. The formed multiple midgap levels can extend optical absorption ranges. Meanwhile, P-introduction can change the coordination environment, suppress the conversion trend of SAs to high valence state and improve electron separation. All the above characteristics can improve effective degradation from Tetrachlorobisphenol A (TCBPA) under visible light irradiation, achieving 100% removal and 44.1% dechlorination rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据