4.7 Review

Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 425, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.127810

关键词

Perfluoroalkyl and polyfluoroalkyl substances (PFAS); (PFAS); Activated carbons; MOF; Adsorption; Porosity; Surface chemistry

资金

  1. Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) [88887.510625/2020-00]

向作者/读者索取更多资源

This review focuses on recent research results on the adsorption of PFAS on activated carbons and metal-organic frameworks. It highlights the potential for further modifications of activated carbons to enhance PFAS adsorption, and the unique features of metal-organic frameworks in providing acid-base complexation and specific interaction sites.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of fluorinated aliphatic compounds considered as emerging persistent pollutants. Owing to their adverse effects on human health and environment, efficient methods of their removal from various complex matrices need to be developed. This review focuses on recent results addressing the adsorption of PFAS on activated carbons (AC) and metal-organic frameworks (MOF). While the former are well-established adsorbents used in water treatment, the latter are relatively new and still not applied at a large scale. Nevertheless, they attract research interests owing to their developed porosity and versatile surface chemistry. While AC provide high volumes of pores and hydrophobic surfaces to strongly attract fluorinated chains, MOF supply sites for acid-base complexation and a variety of specific interactions. The modifications of AC are focused on the introduction of basicity to attract PFAS anions via electrostatic/chemical interactions, and those of MOF - on structural defects to increase the pore sizes. Based on the comparison of the performance and specifically adsorption forces provided by these two groups of materials, activated carbons were pointed out as worthy of further research efforts. This is because their surface, especially that in large pores, where dispersive forces are week and where extensive pore space might be utilized to adsorb more PFAS, can be further chemically modified and these modifications might be informed by the mechanisms of PFAS adsorption, which are specific for MOF. This review emphasizes the effects of these modifications on the adsorption mechanism and brings the critical assessment of the advantages/disadvantages of both groups as PFAS adsorbents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据