4.7 Article

Agricultural waste-derived biochars from co-hydrothermal gasification of rice husk and chicken manure and their adsorption performance for dimethoate

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 429, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.128248

关键词

Agricultural wastes; Co-hydrothermal gasification; Adsorption; Pesticide; Regeneration

资金

  1. National Natural Science Foundation of China [51808003]

向作者/读者索取更多资源

This study combines energy utilisation of agricultural wastes with the adsorption of dimethoate from agricultural wastewater via hydrogen and biochar production using co-hydrothermal gasification. The results show that the feedstock of 3RH+1CM achieves the highest gas yield and hydrogen gasification efficiency, and the derived biochars have the highest adsorption capacity for dimethoate.
This study aimed to combine energy utilisation of agricultural wastes with the dimethoate (DT) adsorption from agricultural wastewater via hydrogen and biochar production using co-hydrothermal gasification (CHTG). The gasification behaviour after CHTG of five ratios of rice husk (RH) and chicken manure (CM) and the corresponding adsorption performance of biochars on DT were evaluated. The results demonstrated that the feedstock of 3RH+ 1CM achieved the maximum gas yield and hydrogen gasification efficiency (HGE), and the highest adsorption capacity of the derived biochars was 3.57 mg g(-1). Surface characterisation and elemental analysis showed that the biochar derived under different C/N ratios varied considerably. The results of the isotherm and kinetic simulation showed that the Langmuir model and pseudo-first-order model best fitted the experimental data. The superior performance of agricultural waste-derived biochars (AWB) over five cycles of regeneration and adsorption indicated that AWB is a green and stable adsorption material for farmland tailwater. In addition, the degradation pathway of DT during hydrothermal gasification (HTG) regeneration of the spent adsorbent was comprehensively discussed. The CHTG treatment enhanced the yield of gaseous products from RH and CM and produced AWBs with high adsorption capacities for DT. This provides a green and efficient technology for resource utilisation of agricultural waste and treatment of agricultural wastewater using pesticide residues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据