4.7 Article

Co-combustion, life-cycle circularity, and artificial intelligence-based multi-objective optimization of two plastics and textile dyeing sludge

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 426, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.128069

关键词

Polyolefin plastics; Pollution control; Gas emissions; Ash components; Energy recovery

资金

  1. National Natural Science Foundation of China [51978175]
  2. Scientific and Technological Planning Project of Guangzhou, China [202103000004]
  3. Science and Technology Planning Project of Yunfu, Guangdong Province, China [2020040401]

向作者/读者索取更多资源

The co-combustion of waste plastics and textile dyeing sludge can enhance circular economies, energy recovery, and pollution control. The interaction between plastics and TDS optimized combustion effects, releasing more CO2 but reducing emissions of CH4, C-H, and C-O.
Given the globally abundant availability of waste plastics and the negative environmental impacts of textile dyeing sludge (TDS), their co-combustion can effectively enhance the circular economies, energy recovery, and environmental pollution control. The (co-)combustion performances, gas emissions, and ashes of TDS and two plastics of polypropylene (PP) and polyethylene (PE) were quantified and characterized. The increased blend ratio of PP and PE improved the ignition, burnout, and comprehensive combustion indices. The two plastics interacted with TDS significantly in the range of 200-600 degrees C. TDS pre-ignited the combustion of the plastics which in turn promoted the combustion of TDS. The co-combustions released more CO2 but less CH4, C-H, and C--O as CO2 was less persistent than the others in the atmosphere. The Ca-based minerals in the plastics enhanced S-fixation and reduced SO2 emission. The activation energy of the co-combustion fell from 126.78 to 111.85 kJ/mol and 133.71-79.91 kJ/mol when the PE and PP additions rose from 10% to 50%, respectively. The co-combustion reaction mechanism was best described by the model of f(alpha) = (1-alpha)n. The reaction order was reduced with the additions of the plastics. The co-combustion operation interactions were optimized via an artificial neural network so as to jointly meet the multiple objectives of maximum energy production and minimum emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据