4.7 Article

Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 428, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.128239

关键词

Magnetron sputtering; Electrospinning; Moisture electroactive; Antimicrobial; Face mask

资金

  1. National Natural Science Foundation of China [51703103]
  2. Youth Innovation Science and Tech-nology Plan of Shandong Province [2020KJA013]

向作者/读者索取更多资源

A bilayer composite filter medium with built-in antimicrobial activities was constructed, which exhibited remarkable performance in filtering particulate matters and killing bacteria. The composite fabric also demonstrated efficient contact sterilization function, potentially promoting the reuse of filter media.
Face mask has become an essential and effective apparatus to protect human beings from air pollution, especially the air-borne pathogens. However, most commercial face masks can hardly achieve good particulate matters (PMs) and high bactericidal efficacy concurrently. Herein, a bilayer structured composite filter medium with built-in antimicrobial activities was constructed by combining cotton woven modified by magnetron sputtered Ag/Zn coatings and electrospun poly(vinylidene fluoride)/polystyrene (PVDF/PS) nanofibers. With the benefit of external moisture, an electrical stimulation was generated inside the composite fabric and thus endowed the fabric antimicrobial function. The resultant composite fabric presented conspicuous performance for integrated air pollution control, high filtration performance towards PM0.3 (99.1%, 79.2 Pa) and exceptional interception ratio against Escherichia coli (99.64%) and Staphylococcus aureus (98.75%) within 20 min contact. The high efficiency contact sterilization function of the bilayer fabric could further potentially promote disinfection and reuse of the filter media. This work may provide a new perspective on designing high-performance face mask media for public health protection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据