4.7 Article

Hardness targeted design and modulation of food textures in the elastic-regime using 3D printing of closed-cell foams in point lattice systems

期刊

JOURNAL OF FOOD ENGINEERING
卷 320, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jfoodeng.2022.110942

关键词

Texture design; Closed-cell foam; 3D food printing; Texture simulation; Hardness modulation; In-line heating

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [405072578]
  2. [-405072578]

向作者/读者索取更多资源

Recently, 3D printing has been used in the structuring and modulation of food textures to produce cellular structures with specific textural properties. This study presents a method for 3D printing structures with pre-defined hardness using parameter fitting and finite element simulations. The material's mechanical properties were actively modulated using on-board layer-based heating. The results showed that the hardness was independent of the foam configuration and the distance between closed-cell bubbles. The obtained hardness design formula showed comparable results to the simulations and 3D printed structures.
Recently, 3D printing has become an innovative technique in the structuring and modulation of food textures. The objective is to systematically extended 3D food printing to allow the production of cellular structures with specifically targeted textural properties. This study presents an approach for 3D printing structures with pre-defined hardness. As a step in the foundation of textural design, parameter fitting of 3D printed foams and finite element simulations was used to obtain a generalized hardness design formula for the 3D printing of closed-cell foams. Structures incorporating spherical bubbles arranged in point lattice cubic configurations were printed at different porosity levels. A complete 3D printing-stabilization method was applied with an integrated on-board layer-based heating and optimized for targeting heat induced material transitions to actively modulate the material's mechanical properties. FEM simulations were performed at different Young's moduli adjusted using variable heating speeds where the results showed an independency of hardness on the foam configuration and the distance between the closed-cell bubbles. Comparable hardness results were observed between the 3D printed and simulated samples where the same exponential decrease behavior was achieved. The hardness design for-mula was developed in relation to the material's Young's modulus, porosity, and printed geometry. The per-formance of the obtained relation showed comparable results to the FEM simulations and the 3D printed structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据