4.7 Article

Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics

期刊

JOURNAL OF FLUID MECHANICS
卷 940, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.219

关键词

breakup/coalescence; contact lines; microscale transport

资金

  1. Swedish Research Council (INTERFACE centre)
  2. ERDF [1.1.1.1/20/A/070]
  3. ERC (advanced grant TRUFLOW)
  4. Swedish Research Council [VR-2014-5680]

向作者/读者索取更多资源

The molecular processes of the motion of the contact line were characterized to assess the accuracy of two continuum two-phase models. The calibrated continuum models accurately captured droplet displacement and break-up, but differences were observed near dynamic wetting transitions when compared to atomistic simulations.
The motion of the three-phase contact line between two immiscible fluids and a solid surface arises in a variety of wetting phenomena and technological applications. One challenge in continuum theory is the effective representation of molecular motion close to the contact line. Here, we characterize the molecular processes of the moving contact line to assess the accuracy of two different continuum two-phase models. Specifically, molecular dynamics simulations of a two-dimensional droplet between two moving plates are used to create reference data for different capillary numbers and contact angles. We use a simple-point-charge/extended water model. This model provides a very small slip and a more realistic representation of the molecular physics than Lennard-Jones models. The Cahn-Hilliard phase-field model and the volume-of-fluid model are calibrated against the drop displacement from molecular dynamics reference data. It is shown that the calibrated continuum models can accurately capture droplet displacement and droplet break-up for different capillary numbers and contact angles. However, we also observe differences between continuum and atomistic simulations in describing the transient and unsteady droplet behaviour, in particular, close to dynamical wetting transitions. The molecular dynamics of the sheared droplet provide insight into the line friction experienced by the advancing and receding contact lines. The presented results will serve as a stepping stone towards developing accurate continuum models for nanoscale hydrodynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据