4.7 Article

Near-wall turbulence alteration with the transpiration-resistance model

期刊

JOURNAL OF FLUID MECHANICS
卷 942, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.358

关键词

turbulence simulation; turbulence control

向作者/读者索取更多资源

The transpiration-resistance model (TRM) is a set of boundary conditions that can alter near-wall turbulence. It includes slip boundary conditions and a transpiration condition. The transpiration factor, which is the product of slip and transpiration lengths, can be used to characterize rough surfaces.
A set of boundary conditions called the transpiration-resistance model (TRM) is investigated in altering near-wall turbulence. The TRM was proposed by Lacis et al. (J. Fluid Mech., vol. 884, 2020, p. A21) as a means of representing the net effect of surface micro-textures on their overlying bulk flows. It encompasses conventional Navier-slip boundary conditions relating the streamwise and spanwise velocities to their respective shears through the slip lengths and . In addition, it features a transpiration condition accounting for the changes induced in the wall-normal velocity by expressing it in terms of variations of the wall-parallel velocity shears through the transpiration lengths and . Greater levels of drag increase occur when more transpiration takes place at the boundary plane, with turbulent transpiration being predominately coupled to the spanwise shear component for canonical near-wall turbulence. The TRM reproduces the effect of a homogeneous and structured roughness up to , encompassing the regime of smooth-wall-like turbulence described using virtual origins (Luchini, 1996 Reducing the turbulent skin friction. In Computational Methods in Applied Sciences' 96 (Paris, 9-13 Sept. 1996), pp. 465-470. Wiley; Ibrahim et al., J. Fluid Mech., vol. 915, 2021, p. A56) and slightly beyond it. The transpiration factor is defined as the product of the slip and transpiration lengths, i.e. . This factor contains the compound effect of the wall-parallel velocity occurring at the boundary plane and increased permeability, both of which lead to the transport of momentum in the wall-normal direction. A linear relation between the transpiration factor and the roughness function is observed for regularly textured surfaces in the transitionally rough regime of turbulence. This shows that such effective flow quantities can be suitable measures for characterizing rough surfaces in this flow regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据