4.4 Review

226Ra and 137Cs determination by inductively coupled plasma mass spectrometry: state of the art and perspectives including sample pretreatment and separation steps

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jenvrad.2022.106812

关键词

Radium; Cesium; Sample handling; Inductively coupled plasma; Mass spectrometry; Solid phase extraction; Separation

向作者/读者索取更多资源

The article discusses the performances of different analytical approaches, followed by an overview of applications.
Achieving precise and accurate quantification of radium (Ra-226) and cesium (Cs-137) by inductively coupled plasma mass spectrometry (ICP-MS) is of particular interest in the field of radiological monitoring and more widely in environmental and biological sciences. However, the accuracy and sensitivity of the quantification depend on the analytical strategy implemented. Eliminating interferences during the sample handling step and/ or during the analysis step is critical since presence of matrix elements can lead to spectral and non-spectral interferences in ICP-MS. Consequently, before the ICP-MS analysis, multiple sample preparation approaches have been applied to purify and/or pre-concentrate environmental and biological samples containing radium and cesium through years, such as (co)-precipitation, solid phase extraction (SPE) or dispersive SPE (dSPE). Separation steps using liquid chromatography and capillary electrophoresis can also be useful in complement with the abovementioned sample preparation techniques. The most attractive sample handling technique remains SPE but efficiency of the extraction procedures is currently limited by sorbent specificity. Indeed, with the recent advances in ICP-MS instrumentation, it becomes indispensable to eliminate residual interferences and improve sensitivity. It is in this direction that it will be possible to meet analytical challenges, e.g. analyzing radium and cesium at concentrations below the pg L-1 range in complex matrices of small volumes, as they are found for instance in pore waters or in biological samples. Development of new innovative sorbents based for example on hybrid and nanostructured materials has been reported with the aim of enhancing sorbent specificity and/or capacity. In the present review, the performances of the different analytical approaches are discussed, followed by an overview of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据