4.7 Article

RUNX2 Regulates Osteoblast Differentiation via the BMP4 Signaling Pathway

期刊

JOURNAL OF DENTAL RESEARCH
卷 101, 期 10, 页码 1227-1237

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/00220345221093518

关键词

core binding factor alpha 1 subunit; bone morphogenetic proteins; CHRDL1 protein; cleidocranial dysplasia; osteogenesis; CRISPR-Cas9 systems

资金

  1. National Natural Science Foundation of China [81771053, 82001029, 81772873, 81970920]

向作者/读者索取更多资源

This study reveals that RUNX2 regulates the BMP4 pathway by inhibiting CHRDL1 transcription, which has important implications for the treatment of bone diseases.
RUNX2 is a master osteogenic transcription factor, and mutations in RUNX2 cause the inherited skeletal disorder cleidocranial dysplasia (CCD). Studies have revealed that RUNX2 is not only a downstream target of the bone morphogenetic protein (BMP) pathway but can also regulate the expression of BMPs. However, the underlying mechanism of the regulation of BMPs by RUNX2 remains unknown. In this project, we diagnosed a CCD patient with a 7.86-Mb heterozygous deletion on chromosome 6 containing all exons of RUNX2 by multiplex ligation-dependent probe amplification (MLPA) and whole-genome sequencing (WGS). Bone marrow mesenchymal stem cells (BMSCs) were further extracted from patient alveolar bone fragments (CCD-BMSCs), an excellent natural model to explore the possible mechanism. The osteogenic differentiation ability of CCD-BMSCs was severely affected by RUNX2 heterozygous deletion. Also, BMP4 decreased most in BMP ligands, and CHRDL1, a BMP antagonist, was abnormally elevated in CCD-BMSCs. Furthermore, BMP4 treatment essentially rescued the osteogenic capacity of CCD-BMSCs, and RUNX2 overexpression reversed the abnormal expression of BMP4 and CHRDL1. Notably, we constructed CRISPR/Cas9 Runx2(+/m) MC3T3-E1 cells, which simulated a variant in CCD-BMSCs, to exclude the interference of other gene deletions and the heterogeneity of the genetic background of primary cells, and verified all findings from the CCD-BMSCs. Moreover, the luciferase reporter experiment showed that RUNX2 could inhibit the transcription of CHRDL1. Through immunofluorescence, the inhibitory effect of CHRDL1 on BMP4/Smad signaling was confirmed in MC3T3-E1 cells. These results revealed that RUNX2 regulated the BMP4 pathway by inhibiting CHRDL1 transcription. We collectively identified a novel RUNX2/CHRDL1/BMP4 axis to regulate osteogenic differentiation and noted that BMP4 might be a valuable therapeutic option for treating bone diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据