4.4 Article

Computational study of ground-state properties of μ2-bridged group 14 porphyrinic sandwich complexes

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 44, 期 3, 页码 229-239

出版社

WILEY
DOI: 10.1002/jcc.26870

关键词

density functional theory; energy decomposition; London dispersion; phthalocyanines; sandwich complexes

向作者/读者索取更多资源

This study investigates the structural properties of mu(2)-bridged porphyrinic double-decker complexes and elucidates the influence of various ligands, metals, substituents, and bridging atoms on the dominant structural motif. The use of different quantum chemical methods and analysis tools provides reliable calculations and insights into the bonding situation and inter-ligand interaction energy.
The structural properties of mu(2)-bridged porphyrinic double-decker complexes are investigated and the influence of various ligands, metals, substituents, and bridging atoms on the dominant structural motif is elucidated. A variety of quantum chemical methods including semiempirical (SQM) methods and density functional theory (DFT) is assessed for the calculation of ecliptic and staggered conformational energies. Local coupled cluster (DLPNO-CCSD(T1)) data are generated for reference. The r(2)SCAN-3c composite scheme as well as the B2PLYP-D4/def2-QZVPP approach are identified as reliable methods. Energy decomposition analyses (EDA) and localized molecular orbital analyses (LMO) are used to investigate the bonding situation and the nature of the inter-ligand interaction energy underlining the crucial role of attractive London dispersion interactions. Targeted modification of the bridging atom, e.g., by replacing O2- by S2- is shown to drastically change the major structural features of the investigated complexes. Further, the influence of different substituents of varying size at the phthalocyanine ligand regarding the dominant conformation is described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据