4.4 Article

Experimental and numerical study on open-hole tension/compression properties of carbon-fiber-reinforced thermoplastic laminates

期刊

JOURNAL OF COMPOSITE MATERIALS
卷 56, 期 14, 页码 2211-2225

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/00219983221096880

关键词

Carbon-fiber-reinforced thermoplastic; open-hole tension; compression; interlaminar fracture toughness; extended finite element method

资金

  1. Council for Science, Technology, and Innovation (CSTI)
  2. Cross-ministerial Strategic Innovation Promotion Program (SIP), Materials Integration for revolutionary design system of structural materials'' (JST)

向作者/读者索取更多资源

The stress-strain responses and damage initiation/propagation mechanisms of an open-hole carbon-fiber-reinforced thermoplastic were investigated through experimental and numerical methods. The superior mechanical properties of the material were found to be mainly attributable to the high toughness and ductility of the thermoplastic resin. The interfacial fracture toughnesses were evaluated through finite element analysis, and the stress-strain response and damage evolution of open-hole specimens were analyzed using a quasi-3D extended finite element method.
The stress-strain responses and damage initiation/propagation mechanisms of T700G/LM-PAEK, an open-hole carbon-fiber-reinforced thermoplastic were investigated experimentally and numerically. To obtain the mechanical properties necessary for numerical simulations, uniaxial tensile/compressive, double cantilever beam, and end notched flexure tests were conducted. T700G/LM-PAEK was found to have comparable or higher Young's modulus, strength, and interlaminar fracture toughness relative to thermoset CFRPs with carbon fiber of a similar grade. These superior mechanical properties are mainly attributable to the higher toughness and ductility of the thermoplastic resin. The interfacial fracture toughnesses were evaluated by finite element analysis with the cohesive zone model to determine the interlaminar fracture toughnesses for crack initiation and propagation. Based on the above experimental and numerical results, the stress strain response and damage evolution of open-hole specimens were analyzed by a quasi-3D extended finite element method (XFEM) and compared with the experimental results. The computational model with the elastoplastic constitutive law provided an accurate prediction of the stress-strain response in both open-hole tension and compression (OHT and OHC, respectively), suggesting that the elastoplastic constitutive law should be considered in XFEM to guarantee the accuracy of strength prediction for both OHT and OHC. The OHT model showed that the Weibull criterion was satisfied without any delamination at the failure strain, corresponding to the brittle failure mode due to fiber breakage. For the OHC simulation, the damage initiation of 0 degrees-ply kinking was observed at 88% of the peak stress. These predicted damage mechanisms agreed reasonably well with the experimental observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据