4.4 Article

An explicit delamination propagation algorithm to simulate delamination growth under quasi-static and fatigue loading without re-meshing using virtual crack closure technique and progressive nodal release

期刊

JOURNAL OF COMPOSITE MATERIALS
卷 56, 期 13, 页码 2063-2081

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/00219983221082039

关键词

delamination; fracture; fatigue; composites; finite element analysis; virtual crack closure technique; floating node method

资金

  1. NASA [NNL09AA00A, 80LARC170004]

向作者/读者索取更多资源

This paper proposes a new modeling approach to simulate delamination propagation in composite laminates under both quasi-static and fatigue loading conditions, utilizing energy release rate and progressive nodal release strategy to achieve delamination growth increment and overcome convergence issues.
A modeling approach is proposed to simulate delamination propagation in composite laminates under both quasi-static and fatigue loading regimes. Delamination growth is simulated using the Virtual Crack Closure Technique combined with a progressive nodal release strategy. In the proposed approach, the delamination propagation increment is determined explicitly, based on the energy release rate calculated in the previous time increment. Explicitly determining the delamination propagation increment linearizes the system of equations that results from the progressive nodal release strategy and eliminates convergence issues associated with delamination growth. In fatigue, the delamination growth increment is calculated using as input growth rates characterized experimentally via fitting of a suitable form of the Paris law to the experimental data. Under quasi-static loading conditions, a sufficiently large pseudo-growth rate is assumed, such that the simulation results converge to the results obtained with the chosen binary (growth/no growth) fracture criterion. Since both fatigue and quasi-static loading regimes share the same underlying algorithm, simulating the transition between fatigue and quasi-static delamination growth is trivial. The approach is demonstrated to accurately simulate delamination growth for all cases assessed, including quasi-static mixed-mode loading and the transition between fatigue and quasi-static delamination growth regimes. Finally, it is also shown that the approach can simulate both self-similar and non-self-similar delamination growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据