4.7 Article

Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 614, 期 -, 页码 405-414

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2022.01.127

关键词

Electrocatalyst; Nitrate reduction; Ammonia production; Selectivity; Reaction pathway

向作者/读者索取更多资源

This study successfully developed efficient catalysts for the reduction of nitrate to ammonia by fabricating a series of CuNi alloy nanoparticles embedded in nitrogen-doped carbon matrix. The catalysts exhibited excellent selectivity and faradaic efficiency, surpassing the performance of monometallic catalysts. The reaction mechanism and key intermediates were revealed through experimental and computational methods. This work provides a new synthetic route for bimetallic catalysts and enhances the understanding of the nitrate to ammonia reaction.
Developing electrocatalysts for efficient reduction of nitrate contaminant to value-added ammonia as energy carrier is a pivotal part for restoring the nitrogen cycle. However, the selectivity of ammonia is far from satisfaction, often suffering from accumulation of toxic nitrite byproduct. Herein, a series of CuNi alloy nanoparticles embedded in nitrogen-doped carbon matrix (CuNi/NC) with hierarchical pores were fabricated by pyrolysis of bimetallic metal-organic frameworks (MOFs). The catalysts exhibited excellent selectivity (94.4%) and faradaic efficiency (79.6%) for nitrate reduction to ammonia, greatly outperforming the performance of monometallic Cu/NC (selectivity of 60.8% and faradaic efficiency of 60.6%). Impressively, the introduction of nickel distinctly suppressed the production of toxic byproduct of nitrite. Online differential electrochemical mass spectrometry (DEMS) and in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) tests were utilized to reveal the key intermediates and the reaction pathway. Density functional theory (DFT) calculations demonstrated that the introducing of nickel into copper lattice modified both the electronic and geometric structures of the catalysts. The copper and nickel sites in the CuNi alloy catalysts operate synergistically to facilitate the hydrogenation of NO2* to HNO2* and suppress the hydrogen evolution reaction, boosting the selective formation of ammonia. This work could provide a new synthetic route for bimetallic catalysts and mechanistic understanding for nitrate to ammonia reaction. (C) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据