4.7 Article

Photocatalytic degradation of tetracycline by using a regenerable (Bi) BiOBr/rGO composite

期刊

JOURNAL OF CLEANER PRODUCTION
卷 339, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.130771

关键词

Built-in electric field; Regenerable photocatalyst; Antibiotic tetracycline; Adsorption-photocatalysis

资金

  1. National Natural Science Foundation of China [51978323, 42077162]
  2. open project of Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (Nan-chang Hangkong University) [ES202180070]
  3. International Cooper-ation and Exchange NSFC [51720105001]
  4. key research and development project of Jiangxi Province [20203BBGL73229]

向作者/读者索取更多资源

A hierarchical heterojunction (Bi)BiOBr/rGO was synthesized, exhibiting a synergistic effect between adsorption and photocatalysis for efficient degradation of tetracycline. The performance could be maintained for over 50 hours without post-treatment, indicating its potential application in continuous-flow configurations for emerging contaminants.
The development of advanced and robust photocatalysts is vital for efficient photocatalytic degradation of the antibiotic tetracycline. Herein, a hierarchical heterojunction (Bi)BiOBr/rGO was facilely synthesized by employing an in-situ reduction strategy. An obvious synergistic effect between adsorption and photocatalysis was observed. A >98% tetracycline degradation efficiency was obtained within 20 min, and high performance could be maintained for over 50 h in a continuous operation without any post-treatment. The experimental and DFT calculation results suggested that there existed a built-in electric field between the interfaces, leading to the fast electron migration. Furthermore, rGO could significantly enhance the tetracycline adsorption, and Bi largely suppressed the charge carrier recombination owing to the surface plasmon resonance (SPR) effect. A possible tetracycline degradation pathway was proposed based on the HPLC-MS analysis. This study provides pathways for the rational design of advanced and robust photocatalysts to effectively degrade emerging contaminants in practical continuous-flow configurations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据