4.7 Article

Conductivity prediction model for ionic liquids using machine learning

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 156, 期 21, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0089568

关键词

-

向作者/读者索取更多资源

This study utilizes a deep neural network to rapidly and accurately predict the conductivity of ionic liquids (ILs) and identifies key chemical structural characteristics that correlate with the ionic conductivity. The findings provide guidance for the design and synthesis of new highly conductive ILs.
Ionic liquids (ILs) are salts, composed of asymmetric cations and anions, typically existing as liquids at ambient temperatures. They have found widespread applications in energy storage devices, dye-sensitized solar cells, and sensors because of their high ionic conductivity and inherent thermal stability. However, measuring the conductivity of ILs by physical methods is time-consuming and expensive, whereas the use of computational screening and testing methods can be rapid and effective. In this study, we used experimentally measured and published data to construct a deep neural network capable of making rapid and accurate predictions of the conductivity of ILs. The neural network is trained on 406 unique and chemically diverse ILs. This model is one of the most chemically diverse conductivity prediction models to date and improves on previous studies that are constrained by the availability of data, the environmental conditions, or the IL base. Feature engineering techniques were employed to identify key chemo-structural characteristics that correlate positively or negatively with the ionic conductivity. These features are capable of being used as guidelines to design and synthesize new highly conductive ILs. This work shows the potential for machine-learning models to accelerate the rate of identification and testing of tailored, high-conductivity ILs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据