4.6 Article

Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 3, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.101615

关键词

-

资金

  1. Cystic Fibrosis Trust [SRC 005]
  2. Natural Sciences and Engineering Research Council (Canada)
  3. Canadian Institutes of Health Research
  4. Canada Research Chairs program

向作者/读者索取更多资源

Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) protein has a significant impact on membrane proximity and ion-channel function. Mutagenesis scan of intracellular loop 4 (ICL4) reveals that second-site mutations, such as R1070W, F1068M, and F1074M, can partially rescue F508del defects. Molecular dynamics simulations highlight the importance of flexibility and aromatic sidechains at the ICL4/NBD1 interface in F508del-induced dysfunction.
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexi-bility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据