4.6 Article

Oxidized high-density lipoprotein promotes CD36 palmitoylation and increases lipid uptake in macrophages

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 6, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.102000

关键词

-

资金

  1. National Natural Science Foundation of China [81760088, 32060219]
  2. Guizhou Provincial Natural Science Foundation [[2022] 038]

向作者/读者索取更多资源

This study reveals a causal link between oxHDL and CD36 palmitoylation, providing insights into foam cell formation and atherogenesis.
Oxidized high-density lipoprotein (oxHDL) reduces the ability of cells to mediate reverse cholesterol transport and also shows atherogenic properties. Palmitoylation of cluster of differentiation 36 (CD36), an important receptor mediating lipoprotein uptake, is required for fatty acid endocytosis. However, the relationship between oxHDL and CD36 has not been described in mechanistic detail. Here, we demonstrate using acyl-biotin exchange analysis that oxHDL activates CD36 by increasing CD36 palmitoylation, which promotes efficient uptake in macrophages. This modification increased CD36 incorporation into plasma lipid rafts and activated downstream signaling mediators, such as Lyn, Fyn, and c-Jun N-terminal kinase, which elicited enhanced oxHDL uptake and foam cell formation. Furthermore, blocking CD36 palmitoylation with the pharmacological inhibitor 2-bromopalmitate decreased cell surface translocation and lowered oxHDL uptake in oxHDLtreated macrophages. We verified these results by transfecting oxHDL-induced macrophages with vectors expressing wildtype or mutant CD36 (mCD36) in which the cytoplasmic palmitoylated cysteine residues were replaced. We show that cells containing mCD36 exhibited less palmitoylated CD36, disrupted plasma membrane trafficking, and reduced protein tion at the aortic root in mice receiving the mCD36 vector was decreased, suggesting that CD36 palmitoylation is responsible for lipid uptake in vivo. Finally, our data indicated that palmitoylation of CD36 was dependent on DHHC6 (Asp-His-Hisincreased the CD36/caveolin-1 interaction and membrane targeting in cells exposed to oxHDL. Altogether, our study uncovers a causal link between oxHDL and CD36 palmitoylation and provides insight into foam cell formation and atherogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据