4.6 Article

SifR is an Rrf2-family quinone sensor associated with catechol iron uptake in Streptococcus pneumoniae D39

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 7, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.102046

关键词

-

资金

  1. US National Institutes of Health, United States [R35 GM118157, R35 GM131767]

向作者/读者索取更多资源

The novel virulence associated Rrf2-family transcriptional repressor SifR regulates genes involved in iron uptake and stress response in Streptococcus pneumoniae, providing insight into how the bacterium acquires iron sources in the host environment. This study sheds light on the mechanisms by which the pathogen adapts to oxidative stress and utilizes catechol-derived iron sources for survival.
Streptococcus pneumoniae (pneumococcus) is a Grampositive commensal and human respiratory pathogen. How this bacterium satisfies its nutritional iron (Fe) requirement in the context of endogenously produced hydrogen peroxide is not well understood. Here, we characterize a novel virulence associated Rrf2-family transcriptional repressor that we term SifR (streptococcal IscR-like family transcriptional repressor) encoded by spd_1448 and conserved in Streptococci. Global transcriptomic analysis of a delta sifR strain defines the SifR regulon as genes encoding a candidate catechol dioxygenase CatE, an uncharacterized oxidoreductase YwnB, a candidate flavin-dependent ferric reductase YhdA, a candidate heme-based ferric reductase domain-containing protein and the Piu (pneumococcus iron uptake) Fe transporter (piuBCDA). Previous work established that membrane-anchored PiuA binds FeIII-bis-catechol or monocatechol complexes with high affinity, including the human catecholamine stress hormone, norepinephrine. We demonstrate that SifR senses quinone via a single conserved cysteine that represses its regulon when in the reduced form. Upon reaction with catechol-derived quinones, we show that SifR dissociates from the DNA leading to regulon derepression, allowing the pneumococcus to access a catechol-derived source of Fe while minimizing reactive electrophile stress induced by quinones. Consistent with this model, we show that CatE is an FeII-dependent 2,3-catechol dioxygenase with broad substrate specificity, YwnB is an NAD(P)H-dependent quinone reductase capable of reducing the oxidized and cyclized norepinephrine, adrenochrome, and YhdA is capable of reducing a number of FeIII complexes, including PiuA-binding transport substrates. These findings are consistent with a model where FeIII-catechol complexes serve as significant nutritional Fe sources in the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据