4.6 Article

Degron tagging of BleoR and other antibiotic-resistance genes selects for higher expression of linked transgenes and improved exosome engineering

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 5, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.101846

关键词

-

资金

  1. Capricor
  2. Johns Hopkins University
  3. National Institutes of Health

向作者/读者索取更多资源

Different antibiotic resistance genes have different thresholds for transgene expression, with BleoR gene having the highest threshold. Fusing antibiotic resistance proteins with degron tags can select for higher levels of recombinant protein expression. Furthermore, using certain antibiotic resistance genes as selection markers can increase the loading of proteins in exosomes. However, a binding peptide CP05 used in exosome decoration may bind to membranes non-specifically.
Five antibiotic resistance (AR) genes have been used to select for transgenic eukaryotic cell lines, with the BleoR, PuroR, HygR, NeoR, and BsdR cassettes conferring resistance to zeocin, puromycin, hygromycin, geneticin/G418, and blasticidin, respectively. We recently demonstrated that each AR gene establishes a distinct threshold of transgene expression below which no cell can survive, with BleoR selecting for the highest level of transgene expression, nearly similar to 10-fold higher than in cells selected using the NeoR or BsdR markers. Here, we tested the hypothesis that there may be an inverse proportionality between AR protein function and the expression of linked, transgene-encoded, recombinant proteins. Specifically, we fused each AR protein to proteasome-targeting degron tags, used these to select for antibiotic-resistant cell lines, and then measured the expression of the linked, recombinant protein, mCherry, as a proxy marker of transgene expression. In each case, degron-tagged AR proteins selected for higher mCherry expression than their cognate WT AR proteins. ER50BleoR selected for the highest level of mCherry expression, greater than twofold higher than BleoR or any other AR gene. Interestingly, use of ER50BleoR as the selectable marker translated to an even higher, 3.5-fold increase in the exosomal loading of the exosomal cargo protein, CD63/Y235A. Although a putative CD63-binding peptide, CP05, has been used to decorate exosome membranes in a technology known as exosome painting, we show here that CP05 binds equally well to CD63(-/-) cells, WT 293F cells, and CD63-overexpressing cells, indicating that CP05 may bind membranes nonspecifically. These results are of high significance for cell engineering and especially for exosome engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据