4.6 Review

Replication of the coronavirus genome: A paradox among positive-strand RNA viruses

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 298, 期 5, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2022.101923

关键词

-

向作者/读者索取更多资源

This article reviews the history of coronavirus replication and provides detailed information on the core replicative machinery of these viruses.
Coronavirus (CoV) genomes consist of positive-sense singlestranded RNA and are among the largest viral RNAs known to date (similar to 30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3050 exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据