4.5 Article

Short-term hydrological response of soil after wildfire in a semi-arid landscape covered by Macrochloa tenacissima (L.) Kunth

期刊

JOURNAL OF ARID ENVIRONMENTS
卷 198, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jaridenv.2021.104702

关键词

Water infiltration; Bare soil; Runoff; Soil loss; Rainfall simulator

向作者/读者索取更多资源

This study evaluated soil hydrology in a semi-arid soil of Central Eastern Spain after a wildfire. Results showed that the burned area had a 27% decrease in runoff compared to the bare soil, while the area with unburned vegetation had a 58% decrease. The burned areas with Macrochloa tenacissima had similar soil losses as the bare soils, while erosion was much lower in the sites with unburned vegetation.
A proper monitoring and management of semi-arid landscapes affected by wildfire is needed to reduce its effects on the soil hydrological response in the wet season. Despite ample literature on the post-fire hydrology in forest soils, it is not well documented how the hydrologic processes respond to changes in vegetation cover and soil properties of semi-arid lands (such as the forest and areas with sparse forests) after wildfire. To fill this gap, this study evaluates soil hydrology in a semi-arid soil of Central Eastern Spain dominated by Macrochloa tenacissima (a widely-spread species in Northern Africa and Iberian Peninsula) after a wildfire. Rainfall simulations were carried out under three soil conditions (bare soil, burned and soils with unburned vegetation) and low-to-high slopes, and infiltration, surface runoff and erosion were measured. Infiltration rates did not noticeably vary among the three soil conditions (maximum variability equal to 20%). Compared to the bare soil, the burned area (previously vegetated with M. tenacissima) produced a runoff volume lowered by 27%. In contrast, in the area covered by the same species but unburned, runoff was lowered by 58%. The burned areas with M. tenacissima produced soil losses that were similar as those measured in bare soils, and, in steeper slopes, even higher. Erosion was instead much lower (-83%) in the sites with unburned vegetation. Overall, the control of erosion in these semi-arid lands is beneficial to reduce the possible hydrological effects downstream of these fire-prone areas. In this direction, the establishment of vegetation strips of M. tenacissima in large and steep drylands of bare soil left by fire may be suggested to land managers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据