4.7 Article

Effect of temperature and strain rate on the compressive deformation response of closed-cell aluminium hybrid foams

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 898, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.162814

关键词

Carbon nanotubes; Hot-deformation; Activation energy; Microstructure; Crashworthiness

向作者/读者索取更多资源

The hot deformation behavior of different types of foams was investigated at different test temperatures and strain rates. It was found that the energy absorption capacity of the foams decreased with increasing test temperature and increased with increasing strain rate. The hybrid foam with the addition of cenospheres and SWNTs showed the highest plateau stress and energy absorption. The deformation mechanism of the foams varied with temperature and strain rate, as revealed by the activation energy data.
The hot deformation behaviour of Al-Si12CulMg1 alloy foam, Al-Si12CulMg1 alloy-single-wall carbon nanotubes (SWNTs), Al-Sil2CulMg1-cenospheres, and Al-Si12CulMg1-cenosphere-SWNTs hybrid foams (HFs) were investigated at different test temperatures (25-400 degrees C) and strain rates (10(-3)-1 s(-1)) conditions. It is observed that the energy absorption capacity of all the foams decreased with an increased test temperature (TT) whereas it increased with an increase in strain rate. The hybrid foam in which the cenosphere and SWNTs were added together exhibited the highest plateau stress and energy absorption amongst all investigated foams. The strain rate sensitivity and activation energy for each kind of foam was calculated as a function of temperature and strain rate. The activation energy data tells that the deformation mechanism is dominated by vacancy and dislocation diffusion at TT <= 200 degrees C regardless of the type of foam, strain rate and relative density. On the other hand, the deformation mechanism is dominated by dynamic recovery and recrystallization when the TT increase beyond 200 degrees C (TT > 200 degrees C). This study further demonstrates the synergistic effect of cenosphere and SWNTs on enhancing the plateau stress and energy absorption of HFs. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据