4.7 Article

Electro-deposited copper nanoclusters on leaf-shaped cobalt phosphide for boosting hydrogen evolution reaction

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 902, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.163771

关键词

Cobalt phosphide; Copper; Nanoclusters; Electrochemical deposition; Hydrogen evolution reaction; Schottky junction

资金

  1. Science and Technology Commission of Shanghai Municipality [16ZR1413900]
  2. National Natural Science Foundation of China [21673137]

向作者/读者索取更多资源

This study reports a novel construction strategy of thin-leaf-shaped cobalt phosphide combined with copper nanoclusters supported on nickel foam, which exhibits good performance in electrocatalytic water-splitting. The interface-engineered nanocomposite shows enhanced electrochemical characteristics with a large number of active sites and low charge-transfer resistance. The proposed electrode demonstrates good stability and lower overpotential, providing a new perspective for the engineering of non-noble metals in metal phosphides.
Exploring structural regulation of transition metal phosphides (TMPs) by incorporating suitable foreign components to increase hydrogen evolution reaction (HER) performance presents considerable development for electrocatalytic water-splitting technology. Herein, we reported an original construction strategy of thin-leaf-shaped cobalt phosphide coupled with copper nanoclusters supported on nickel foam (NF) for HER. A simple electrochemical deposition technique is used to obtain the interface-engineered Co2P@Cu nanostructure. The resultant nanocomposite with a vertically staggered structure shows the enhanced electrochemical characteristics derived from the Schottky junction at the interface between Co2P and Cu, which has a large of active sites and low charge-transfer resistance. The Schottky effect promotes charge distribution, accelerates adsorption of hydrogen intermediates, and facilitates electron transfer in the Co2P. As a result, the Co2P@Cu composite drives the current densities of 10 and 100 mA cm(-2) for the alkaline HER to reach the lower overpotentials of 99.7 and 303.2 mV, respectively, and a smaller Tafel slope of 48.8 mV dec(-1) compared to the bare Co2P electrocatalyst. Moreover, the proposed electrode exhibits good HER durability with almost no loss of Cu based on 2000 cycles of cyclic voltammetry sweeps and 24 h of chronoamperometry test. This work offers a perspective for the additive engineering of non-noble metals to metal phosphides toward efficient HER. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据