4.7 Article

Three-dimensional interconnected porous carbon nanoflakes with improved electron transfer and ion storage for lithium-ion batteries

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 904, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.164122

关键词

Three-dimensional structure; Carbon nanoflake; Hierarchical porous; Anode; Lithium-ion battery

资金

  1. National Natural Science Foundation of China [22008053, 52002111]
  2. Key Research and Development Program of Hebei Province [20310601D, 205A4401D]
  3. Natural Science Foundation of Hebei Province [B2021208061]
  4. High Level Talents Funding of Hebei Province [A202005006]
  5. Science Foundation of University of Hebei Province [BJ2020026, BJ2021001]

向作者/读者索取更多资源

Graphite anode has limitations in capacity for lithium-ion batteries. Therefore, it is important to explore novel carbon anodes with high capacity, high-rate properties, easy accessibility, and environmental benignity. In this study, three-dimensional interconnected porous carbon nanoflakes were successfully constructed and showed excellent electrochemical performance, which could promote the development of high-performance carbon anodes for lithium-ion batteries.
Graphite anode has been commercially applied to lithium-ion batteries (LIBs); however, its low theoretical specific capacity (372 mAh g(-1)) cannot meet the ever-increasing energy storage requirements with high energy/power densities. Therefore, exploring novel carbon anode with high capacity, high-rate properties, easy accessibility, and environmental benignity is urgent and indispensable. Herein, three-dimensional interconnected porous carbon nanoflakes (3DPCNs) are successfully constructed by a chemical blowing strategy followed by a washing process. The resulting 3DPCN has numerous ions/electrons fast transfer pathways, expanded interlayer spacing, high specific surface area (189.5 m2 g(-1)). All of which are more favorable for improving reaction kinetics and maintaining structural integrity. Based on this, the optimized 3DPCN electrode delivers an excellent electrochemical performance, including high capacity (802.6 mAh g(-1) at 500 mA g(-1)), rate capability (581 mAh g(-1) at a high current density of 2000 mA g(-1)), and long-cycle stability. The synthesis strategy presented in this work is expected to promote the development of carbon anodes for high-performance LIBs. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据