4.6 Article

Liquid-Liver Phantom Mimicking the Viscoelastic Dispersion of Human Liver for Ultrasound- and MRI-Based Elastography

期刊

INVESTIGATIVE RADIOLOGY
卷 57, 期 8, 页码 502-509

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/RLI.0000000000000862

关键词

elastography; phantom; viscoelasticity; shear wave dispersion; shear modulus; shear viscosity; ultrasound elastography; magnetic resonance elastography; liver

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [SFB 1340, BIOQIC GRK2260]

向作者/读者索取更多资源

This study introduces a phantom that mimics the stiffness dispersion of the human liver, allowing for improved standardization of liver elastography across ultrasound and MRI devices. The phantom shows good reproducibility and low variability, making it useful for establishing standard liver stiffness measurements.
Objectives Tissue stiffness can guide medical diagnoses and is exploited as an imaging contrast in elastography. However, different elastography devices show different liver stiffness values in the same subject, hindering comparison of values and establishment of system-independent thresholds for disease detection. There is a need for standardized phantoms that specifically address the viscosity-related dispersion of stiffness over frequency. To improve standardization of clinical elastography across devices and platforms including ultrasound and magnetic resonance imaging (MRI), a comprehensively characterized phantom is introduced that mimics the dispersion of stiffness of the human liver and can be generated reproducibly. Materials and Methods The phantom was made of linear polymerized polyacrylamide (PAAm) calibrated to the viscoelastic properties of healthy human liver in vivo as reported in the literature. Stiffness dispersion was analyzed using the 2-parameter springpot model fitted to the dispersion of shear wave speed of PAAm, which was measured by shear rheometry, ultrasound-based time-harmonic elastography, clinical magnetic resonance elastography (MRE), and tabletop MRE in the frequency range of 5 to 3000 Hz. Imaging parameters for ultrasound and MRI, reproducibility, aging behavior, and temperature dependency were assessed. In addition, the frequency bandwidth of shear wave speed of clinical elastography methods (Aplio i900, Canon; Acuson Sequoia, Siemens; FibroScan, EchoSense) was characterized. Results Within the entire frequency range analyzed in this study, the PAAm phantom reproduced well the stiffness dispersion of human liver in vivo despite its fluid properties under static loading (springpot stiffness parameter, 2.14 [95% confidence interval, 2.08-2.19] kPa; springpot powerlaw exponent, 0.367 [95% confidence interval, 0.362-0.373]). Imaging parameters were close to those of liver in vivo with only slight variability in stiffness values of 0.5% (0.4%, 0.6%), 4.1% (3.9%, 4.5%), and -0.63% (-0.67%, -0.58%), respectively, between batches, over a 6-month period, and per degrees C increase in temperature. Conclusions The liquid-liver phantom has useful properties for standardization and development of liver elastography. First, it can be used across clinical and experimental elastography devices in ultrasound and MRI. Second, being a liquid, it can easily be adapted in size and shape to specific technical requirements, and by adding inclusions and scatterers. Finally, because the phantom is based on noncrosslinked linear PAAm constituents, it is easy to produce, indicating potential widespread use among researchers and vendors to standardize liver stiffness measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据