4.7 Review

Regulation of Translation, Translocation, and Degradation of Proteins at the Membrane of the Endoplasmic Reticulum

期刊

出版社

MDPI
DOI: 10.3390/ijms23105576

关键词

UPR; ERAD; co-chaperones; translocation; degradation; translocon

向作者/读者索取更多资源

The endoplasmic reticulum (ER) plays a central role in protein folding and secretion. BiP and ERdj proteins are important chaperones in the ER, assisting in the folding process and regulating protein synthesis, translocation, and degradation. Dysfunction of these proteins can lead to the accumulation of unfolded proteins and the development of metabolic diseases.
The endoplasmic reticulum (ER) of mammalian cells is the central organelle for the maturation and folding of transmembrane proteins and for proteins destined to be secreted into the extracellular space. The proper folding of target proteins is achieved and supervised by a complex endogenous chaperone machinery. BiP, a member of the Hsp70 protein family, is the central chaperone in the ER. The chaperoning activity of BiP is assisted by ER-resident DnaJ (ERdj) proteins due to their ability to stimulate the low, intrinsic ATPase activity of BiP. Besides their co-chaperoning activity, ERdj proteins also regulate and tightly control the translation, translocation, and degradation of proteins. Disturbances in the luminal homeostasis result in the accumulation of unfolded proteins, thereby eliciting a stress response, the so-called unfolded protein response (UPR). Accumulated proteins are either deleterious due to the functional loss of the respective protein and/or due to their deposition as intra- or extracellular protein aggregates. A variety of metabolic diseases are known to date, which are associated with the dysfunction of components of the chaperone machinery. In this review, we will delineate the impact of ERdj proteins in controlling protein synthesis and translocation under physiological and under stress conditions. A second aspect of this review is dedicated to the role of ERdj proteins in the ER-associated degradation pathway, by which unfolded or misfolded proteins are discharged from the ER. We will refer to some of the most prominent diseases known to be based on the dysfunction of ERdj proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据