4.7 Article

Monascin from Monascus-Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in Caenorhabditis elegans

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 64, 期 38, 页码 7114-7120

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.6b02779

关键词

Alzheimer's disease (AD); amyloid-beta; monascin; fungus secondary metabolite; Caenorhabditis elegans; oxidative stress; DAF-16

资金

  1. Ministry of Science and Technology (MOST) of Taiwan [NSC 101-2313-B-002-041-MY3]
  2. MOST [NSC 100-2811-B-002-112]

向作者/读者索取更多资源

Amyloid-beta-(A beta)-induced oxidative-stress and toxicity are leading risk factors. for Alzheimer's disease (AD). Monascin (MS) is a novel compound proposed for antioxidative stress applications and is derived from an edible fungus secondary metabolite. This study assessed the effects of MS on oxidative stress, paralysis, A beta accumulation, and lifespan in the nematode Caenorhabditis elegans and investigated its underlying mechanisms of action. The results showed that MS increased the survival of C. elegans under juglone-induced oxidative stress and attenuated endogenous levels,of reactive oxygen species. Furthermore, MS induced a decline in A beta-induced paralysis phenotype and A beta deposits in the transgenic strains CL4176 and CL2006 of C. elegans, which expresses human muscle-specific A beta(1-42) in the cytoplasm of body wall muscle cells. In addition, mRNA levels of strain CI4176 of several antioxidant genes (sod-1, sod-2, sod-3, hsp16.2) and daf-16 were up-regulated by MS treatment when compared to the nontreated controls. Further evidence showed that MS treatment in C. elegans strains lacking DAF-16/FOXO did not affect paralysis or lifespan phenotypes. The findings indicate that MS reduces oxidative stress and A beta toxicity via DAF-16 in C. elegans, suggesting that MS can be used for the prevention of AD-associated oxidative stress complications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据